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Central Question

It is well known that standard online optimization algorithms (e.g.
Online Gradient Descent) can achieve sublinear O(+/T) regret as long
as we apply a decreasing step-size (learning rate) of 1/4/T and that
this bound is tight.

Can we prove sublinear regret for OGD without
decreasing step-sizes in zero-sum games?’

Significance

Min-max optimization is a problem of interest in several communities
including Optimization, Game Theory and Machine Learning.

» Gradient descent is the most well studied optimization technique
and (bilinear) zero-sum games are the most standard games. Even
in 2x2 games, this toy benchmark is not well understood and the
behavior is not simple.

» Gradient descent in zero-sum games is actually unstable and
chaotic.

» Sublinear regret implies time average convergence to exact Nash
equilibria in zero-sum games.

Zero-Sum Games

A two-player game consists of two players {1, 2} where each player
has n; strategies to select from. Player i can either select a pure
strategy j € [n;| or a mixed strategy

Xi € X = {X,’ c Rgo ; Zje[n,-] Xjj = ].}.

In @ zero-sum game, there is a payoff matrix A € R"*" where

player 1 receives utility x; - Axy and player 2 receives utility —x; - Axp
resulting in the following optimization problem:

max min x; - Axo (Two-Player Zero-Sum Game)
X1EXT X0EX,

The solution to this saddle problem is the Nash equilibrium x"&.

NE NE NE
x; Ax > xg - Axy

independent of what strategy player 2 selects.

Full version at arxiv:1905.04532
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Gradient-Descent-Ascent

The most common class of online learning algorithms is again the
family of follow-the-regularized-leader algorithms.

i =vi+ Y Ax (Player 1 Payoff Vector)
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X, =  argmax {y,-t - X i) > (FTRL)
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X, = argmax Yy - X > (OGD)
XiZO:ZjE[ni] x;j=1 277 )

where 1 corresponds to the learning rate.

Theorem (Convergence to the Boundary)

Theorem: Let A be a 2x2 game that has a unique fully mixed Nash
equilibrium where strategies are updated according to OGD. For any
non-equilibrium initial strategies and any fixed learning rate 1, there

exists a B such that x' is on the boundary for all t > B.

Theorem (©(v/T) Regret in 2x2 Zero-Sum Games)

Let A be a 2x2 game that has a unique fully mixed Nash equilibrium.
When x* is updated according to OGD with any fixed learning rate 7,

Regret;(T) € O (ﬁ)
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Figure: 5000 lterations of Gradient Descent on Matching Pennies with n = .15.

Understanding the Geometry of the Dynamics

The payoff vector y’ is a formal dual of the strategy x'. We choose a
dual space that will be convenient for showing our results in 2x2
Zero-sum games.
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Figure: Strategies and Transformed Payoff Vectors Rotating Clockwise and Outwards in
Matching Pennies with n = .15 and (y{;, y31) = (.2, —.3).

Key Proof Idea

The sum of the convex conjugates of the regularizers can be
thought as a non-decreasing system “energy''. We keep track of
its increase by partitioning the space in regions.

22 11 - Strategies x'
&\ % - Payoff Vector z°
. Energy ri increases by ©(1) per step.
R There are ©(1) steps per rotation.

7 H\\' z1  Energy r; does not change per step.
. There are O(r;) steps per rotation.

Figure: Partitioning of Payoff Vectors

As a result, strategies are almost always in the corners.
T
Regret;(T) < O(1) + > (xit — x{) - Ax! (1)
t=0

Since the strategies rarely change, the regret rarely grows resulting in
O(V/T) regret.

The proof ideas extend to higher dimensions and to other variants of
FTRL. Moreover, we provide experimental evidence that sublinear
regret extends to these settings.



