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Central Question

It is well known that standard online optimization algorithms (e.g.
Online Gradient Descent) can achieve sublinear O(

√
T ) regret as long

as we apply a decreasing step-size (learning rate) of 1/
√
T and that

this bound is tight.

Can we prove sublinear regret for OGD without
decreasing step-sizes in zero-sum games?

Significance

I Min-max optimization is a problem of interest in several communities
including Optimization, Game Theory and Machine Learning.

I Gradient descent is the most well studied optimization technique
and (bilinear) zero-sum games are the most standard games. Even
in 2x2 games, this toy benchmark is not well understood and the
behavior is not simple.

I Gradient descent in zero-sum games is actually unstable and
chaotic.

I Sublinear regret implies time average convergence to exact Nash
equilibria in zero-sum games.

Zero-Sum Games

A two-player game consists of two players {1, 2} where each player
has ni strategies to select from. Player i can either select a pure
strategy j ∈ [ni ] or a mixed strategy
xi ∈ Xi = {xi ∈ Rni

≥0 : ∑j∈[ni ] xij = 1}.
In a zero-sum game, there is a payoff matrix A ∈ Rn1×n2 where
player 1 receives utility x1 · Ax2 and player 2 receives utility −x1 · Ax2
resulting in the following optimization problem:

max
x1∈X1

min
x2∈X2

x1 · Ax2 (Two-Player Zero-Sum Game)

The solution to this saddle problem is the Nash equilibrium xNE .
xNE
1 · Ax2 ≥ xNE

1 · AxNE
2

independent of what strategy player 2 selects.
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Gradient-Descent-Ascent
The most common class of online learning algorithms is again the
family of follow-the-regularized-leader algorithms.
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x t
i = arg max

xi≥0:
∑

j∈[ni ]
xij=1

y t
i · xi −

hi(xi)
η

 (FTRL)

x t
i = arg max

xi≥0:
∑

j∈[ni ]
xij=1

y t
i · xi −

||xi||22
2η

 (OGD)

where η corresponds to the learning rate.

Theorem (Convergence to the Boundary)

Theorem: Let A be a 2x2 game that has a unique fully mixed Nash
equilibrium where strategies are updated according to OGD. For any
non-equilibrium initial strategies and any fixed learning rate η, there
exists a B such that x t is on the boundary for all t ≥ B.

Theorem (Θ(
√
T ) Regret in 2x2 Zero-Sum Games)

Let A be a 2x2 game that has a unique fully mixed Nash equilibrium.
When x t is updated according to OGD with any fixed learning rate η,
Regret1(T ) ∈ O

(√
T
)
.

Experiments
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Figure: 5000 Iterations of Gradient Descent on Matching Pennies with η = .15.

Understanding the Geometry of the Dynamics

The payoff vector y t
i is a formal dual of the strategy x t

i . We choose a
dual space that will be convenient for showing our results in 2x2
zero-sum games.
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Figure: Strategies and Transformed Payoff Vectors Rotating Clockwise and Outwards in
Matching Pennies with η = .15 and (y 0

11, y 0
11) = (.2,−.3).

Key Proof Idea

The sum of the convex conjugates of the regularizers can be
thought as a non-decreasing system “energy". We keep track of
its increase by partitioning the space in regions.
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Energy rj increases by Θ(1) per step.
There are Θ(1) steps per rotation.
Energy rj does not change per step.
There are Θ(rj) steps per rotation.
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Figure: Partitioning of Payoff Vectors

As a result, strategies are almost always in the corners.

Regret1(T ) ≤ O(1) +
T∑
t=0

(x t+1
1 − x t

1) · Ax t
2 (1)

Since the strategies rarely change, the regret rarely grows resulting in
O(
√
T ) regret.

The proof ideas extend to higher dimensions and to other variants of
FTRL. Moreover, we provide experimental evidence that sublinear
regret extends to these settings.


